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Exact  express ions  are found for  the drag (modified Stokes force) and the lift (modified 
Magnus force) on a porous sphere spinning slowly in a viscous fluid flowing slowly and 
uniformly past  it. 

1. Statement of the Problem.  Suppose a porous sphere of radius R rotating with a constant angular 
velocity w 1 is located at the origin of coordinates  in a uniform flow V i =const ,  where V R / v  and wR2/v < 1. 
The general  express ion  for  the force on the sphere due to the flow can be obtained f rom the requirement  
of covar iance .  For  convenience we introduce in place of the angular velocity pseudovector  wl the true anti- 
symmet r i c  t ensor  f l i k = e i k l  ~ l  dual to it. Assuming slow motions, VR/u and coR2~ < 1, we have 

Fi =(~V~+O [3i~. Vk+0(Vi, ~Vk), (1 .1)  

where rp and 0 are constant sca la r s  depending on the viscosi ty and density of the fluid, the size of the sphere, 
and the volume and surfaee permeabi l i ty  eoeffieients of the porous sphere.  

The t e rm cpV i r epresen t s  a co r ree t ion  to the Stokes res is tance force f rom the porosi ty,  and Ofli k V k 
is a eor ree t ion  to the lift. The lift is a bi l inear  (cross) effect, and its evaluation requires  a solution of the 
problem which takes account of the c r o s s  t e rms  in the nonlinear t e rms  of the Nav ie r -S tokes  equation and 
because of the assumption of slow motions does not require taking account of te rms  containing squares of 
the angular  velocity and the ambient velocity.  Thus, f rom the very beginning we ean exclude f rom cons ider -  
ation centrifugal  fo rces  inside the porous  spinning sphere.  

We note that in nonstat ionary flow [Vi =Vi(t), flik=Bik (t)] the force will not be a funetion but a func- 
tional of Vi(t) and flik (t) and their  t ime derivat ives .  In par t icular ,  the functional will contain the aftereffect  
integral .  In this case (p and 0 of (1.1) will not be constants,  but will depend on the time and the integrands 
of the funetionals. Since the c h a r a c t e r  of the t ime dependence of cp and 0 eannot be established f rom eovar i -  
ant or  dimensional arguments ,  the functional analog of (1.1) for  nonstationary motion becomes useless .  

We consider  s teady-s ta te  motion. To determine the explicit fo rm of the force (1.1), i.e., the coef-  
ficients go and 0, it is n s e e s s a r y  to know the per turbed velocity and p r e s s u r e  fields result ing f rom the p r e s -  
ence of the spinning sphere.  Their  calculation requires  solving two problems.  The f i rs t  or  outer problem 
requires  solving the Nav ie r -S tokes  equation 

~v~ I Op O:'~ (1.2) 
v~ ~ - - ~ = -  W Ox--? + ~A,,. ~=0, ~>R, 
l)i'----> Y l  as r - - >  o o ,  

and the second or  inner problem requi res  solving the Darcy equation for  permeat ion  flow of fluid in the 
porous sphere,  

A H = 0 ,  Qi k 0H (1.3) 
It Ox i , r < R .  

As was shown above, the centrifugal  force must  be omitted in the approximation considered.  

Here v i and p are  the velocity and p r e s s u r e  of the fluid outside the sphere, Qi and H are the p e r m e -  
ation velocity and the p r e s s u r e  of the fluid inside the sphere,  k is the permeabi l i ty  of the sphere material ,  
and r7 is the dynamic viscosi ty  of the fluid. 
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Three  boundary conditions a re  set  on the surface  of the porous  sphere :  the equali ty of the normal  
components  of the outer  and pe rmea t ion  veloci t ies  

nivi=n~Qi,, r = R ;  (1.4) 

the equality of the outer  normal  s t r e s s  and the p r e s s u r e  inside the sphere  

0~' i avk ) 
P - ~ l l ~  v., n ' n h : I I '  r = R  (1.5) "/ 

and, finally, the boun~tary condition connecting the gradient  of the tangential  component  of the ou te rve loe i ty  
and the difference in tangential  components  of the outer  and pe rmea t ion  veloci t ies  

~ - -  nm ~-~ (npvv) = -~zm [ v m - - Q m - - ~ X R ) m ] ,  r---- R.  (1.6) 

Boundary condition (1.6) is p roposed  on the bas i s  of expe r imen t s  in [1] and is theore t ica l ly  justif ied in 
[2]. I ts  phys ica l  meaning becomes  c l e a r  if  we note that at the boundary of a porous  body the velocity of 
the fluid changes f r o m  v outside the body to Q inside the body over  a ce r t a in  c h a r a c t e r i s t i c  dis tance de-  
pending on the porous  p r o p e r t i e s  of the body. Since the pe rmeab i l i t y  k has the d imensions  of the square  
of a length, there is only one cha rac t e r i s t i c  dis tance in a porous  body,  in addition to the size of the body 
i tself ,  and it is p ropor t iona l  to 4k. Thus,  the change in velocity in the region nea r  the sur face  occurs  
ove r  a dis tance Ar  ~r  and, consequently,  we have fo r  the velocity gradient  in this region A v / ~ r  ~ (v - Q)/  
Ck or  0 v / 0 r = a  [(v - Q)/kl/2].  Taking account of the cu rva tu re  of the sphere  leads to Eq. (1~.6). Thus, the 
coefficient  a introduced in (1.6) r e f l ec t s  the sur face  p r o p e r t i e s  of the porous  body just  as the coefficient  k 
re f lec t s  its volume p rope r t i e s ,  and both coeff icients  mus t  be de te rmined  exper imenta l ly  fo r  each porous  
m a t e r i a l .  The solution of the p rob l em  is cons t ruc ted  as an expansion in d imens ion less  smal l  p a r a m e t e r s  
propor t ional ,  respec t ive ly ,  to Vi and flik, although d imens ion less  va r i ab les  will not be used explicit ly l a t e r  
on. The f i r s t  approximat ion,  l inear  in V i and flik, does not contain the i r  product  and the re fo re  does not 
take account of the nonl inear  t e r m s  in the N a v i e r - S t o k e s  equation. In the second approximat ion  there  a re  
retained eve rywhere ,  including the nonlinear  t e r m  v k (~vi/~x k) of the N a v i e r - - ~ o k e s  equation, only the 
c r o s s  t e r m s  propor t iona l  to flikVm, i.e.,  those respons ib le  for  the lift.  

2. F i r s t  (Linear) Approximat ion.  The f i r s t - app rox ima t ion  p rob l em differs  f r o m  the c o m p l e t e p r o b -  
1era (1.2)-(1.6) only in that  we have instead of (1.2) 

~ a:'i(l) v~ (i) (2.1) 0--~ o-~i +-q,hvi (l), ox~ = O, . .-+Vi as r-->~o. 

Applying the d ivergence operat ion to the Navter - -Stokes  equation (2.1), we obtain 

ApO)=0. (2.2) 

The solution of (2.2) in which the pe r tu rba t ion  of the p r e s s u r e  field by the sphere  vanishes at infinity has 
the f o r m  

a a i~x i /7  ) 0  [ I \ U, a ~ [ i \ 1 § § §  

The tensors  a,  a i, a ik  . . . .  a re  constants  and must  depend l inear ly  on the constant t ensors  Vi and flik in 
the f i r s t  approximat ion  which we are  now construct ing.  F r o m  the r equ i remen t  of covar iance ,  and noting 
that /~ik=-flki, we obtain a =0 and a =AV i. All t en so r s  of higher rank vanish.  Thus,  

0 i 

Substituting the exp re s s ion  obtained for  the p r e s s u r e  into (2.1), we have for  the velocity 

t OpO) +7' ( t ~ (2.4) Av~ (1) = -~- ~ = AVm ~ - T - ] -  

Using the fact that Ar  = 9 / r ,  we find the p a r t i c u l a r  solution of Eq. (2.4) vi(#a .... c = (AVm/2)(02/0xiaxm)r" 
The solution of the homogeneous equation (2.4) sat isfying the conditionvi(i) -~LV i as r ~ o  has the fo rm:  
V~omo=Vi  + (ci / r )  +Cik(O/~Xk) (1/r) +Cik / (32/OXkOXl)(1/r)  + . . . .  Like the coeff ic ients  a, a i, a ik  . . . . .  
the coefficients  c i, elk . . . .  must  also be l inea r  covar iant  combinat ions of the t enso r s  Vi and/~ik, which 
uniquely de te rmines  the i r  fo rm:  c i =cVi, eik=Dflik , Cik / =a6ikV/. All t enso r s  of higher  rank vanish.  
Writing the expres s ion  for  the velocity and sat isfying the equation of continuity we obtain for  the velocity 

( )  ~ ' AVm 0 ~ AVI 0 t +eVh ( ~ (2.5) 
vi(~) = Vi + z ~-[~: (r) - -  --~--+ D~k~x  k r ~ r ) "  

100 



We t u r n  to the inner  p r o b l e m .  
a t ion  flow in the sphe re  the Di r i ch le t  p r o b l e m  

3A t2~ (2.6) Arid) = 0, HO) (R) = ~lV~n,, - -  ~ + t~'. }" 

We seek  a s e r i e s  so lu t ion  of (2.6) in the f o r m  IIO)=~?+V/-~siV~,x~x~-b~ut x ~ x h x t §  

F r o m  boundary  condi t ion  (2.6) it fol lows that  y =  Yik = Yik/=  0, Yi =~?Vi [ -  (3A/R 3) + (12a/R~)]. The 
equa t ion  AII(Q :=0 is sa t i s f ied  au toma t i ca l ly  in this  ca se  so [hat we have inside the sphe re  

3A t28', k 0II k V .  [3A 12~ 
H(t) -- ~V, - -  ~ -  + -~-g-)x~; Qs = - ,-T ox--~i = ' [ -~  ~ ,  ~" 

Now sa t i s fy ing  the r e m a i n i n g  two boundary  condi t ions  (1.4) and (1.6) we obtain a s y s t e m  of equat ions  whose 
so lu t ion  g ives  "the coef f i c ien t s  

3 -~ 3 kl/2 

A = ~zR B, D - -  ~--~ (2.7) 

Subst i tut ing (2.3) and (2.5) into (1.3) and (1.5) we obtain fo r  the p e r m e -  

8 

t 1 k 1/2 

2 2 aH Ha . 

3. Second A p p r o x i m a t i o n  fo r  the Oute r  P r o b l e m .  We wr i te  the equat ion  fo r  the ou te r  p r o b l e m  in 
the second  approx imat ion ,  denot ing s e c o n d - a p p r o x i m a t i o n  quant i t ies  by the s u p e r s c r i p t  (2), 

vk ('> 0~(~>- ~ ~ + vav~ (2>, ~~ = 0, r > R (3.1)  
Oxt~ P Ox i Ox i 

Subst i tut ing irfi:o (3.1) the e x p r e s s i o n  f o r  vi(Q f r o m  (2.5) and, in a c c o r d a n c e  with the p r o b l e m  posed,  s e l e c t -  
ing in the l e f t -hand  Eq.  (3.1) only the c r o s s  t e r m s  p ropo r t i ona l  to flikVm , we obtain 

i 0p (2) ~ (  i A e )  D~izn~ 'mnm(3  2A) D')~,~mnmni ( A  3e) (3.2) 
hvi(2) := ~---~z i + --  -;~ + ~ + - ~  + - " ~3 ~ + 7. ~ --  7 ' 

Applying the d ive rgence  o p e r a t i o n  to (3.2), we obtain  the equa t ion  fo r  p (2) 

D ~ V 0 / A  3~ ~P(2) ~'~-O Plm m~xl l~r4 r.I. (3.3) ] 

A p a r t i c u l a r  solut ion of (3.3) is 

p•2) D 0 A e 
a r t i c : P  ~imVm~~xi(8-~--~'rfi ). (3.4) 

We seek  the solut ion of the homogeneous  equa t ion  in the f o r m  

Ph (~> s ~ o ( t ' ~  o, / t \  
omo = r + " ~  C Z ]  + ~ " ~ [ W )  + '" (3.5) 

F r o m  the fac t  that  the cons tan t  t e n s o r s  s, s i, Sik . . . .  mus t  be l i n e a r  cova r i an t  combina t ions  of the 
t e n s o r  fiikVm o r  i ts  con t rac t ion ,  it fo l lows uniquely that  

8=0, r162 (3.6) 

All t e n s o r s  of h igher  rank  a r e  equal  to  z e r o  (pD is in t roduced  fo r  un i fo rmi ty  of notat ion in subsequent  
f o r m u l a s ) .  Thus ,  f r o m  (3.4)-(3.6) 

p(2) = pDVm~,~h ~ 8r~ + 4-~ " 

Subst i tut ing (3.7) into (3.2) and making  t r a n s f o r m a t i o n s  to  s impl i fy  the in tegra t ion ,  we ob ta in the  equat ion 

Avi(2) ~ v \ - -  ~ + ~ + v Ox~Ox k \ r t6r ~ + ~ + v OxmOx ~ . - -  - -  ~r2)" 

We wri te  a pa~ t i cu la r  Solution of th i s  equat ion:  

V~partic V + + - -  ~ ~ ~ ax~.Ox h 

Alnr  ~_ ~ -+" ~ OxnLOx~ ~ 4 t6 

101 



and the solut ion of the homogeneous  equa t ion  (3.8): V~2h)om o = f i t / r )  +~ik (3/aXk)(1/r)  + Vik/ (8/aXkDX/)(1/ 
r) + . . . .  where  the cons tan t  t e n s o r s  T i, ~'ik . . . .  a r e  p r o p o r t i o n a l  to  the  [ enso r  flikVm o r  i ts con t r ac t i on  
flikVk . Sat isfying the c o v a r i a n c e  r e q u i r e m e n t  we obtain:  r i = (D/p) tVm/~mi; ~'ik = 0, Tik / = (D/u)r i + 
( D / v ) ' r 6 i k V m f l m l .  T e n s o r s  of h igher  rank  vanish  (D/U is in t roduced  fo r  un i fo rmi ty  of nota t ion  in subsequent  
f o rmu la s ) .  Sat isfying the equat ion  of cont inui ty  we obtain the fol lowing e x p r e s s i o n  fo r  the ou te r  ve loc i ty  
in the second approx imat ion :  

v #  ) Dp~,,~, .~(/_:_ , A ~--~ s )  
~" v \ 2r 4r 2 + - 7 -  d - ~  -[- 

Dl',,,~,.,~ninl~ [ A ::~c 
+ ~ ~ ~ + + + + ~ ) 

DV,~,,,,,.~,,~( _ ~ +  .4 3r  
+ V , - -  _ ~ + ~ " (3.9) 

4. Second Approx ima t ion  f o r  the Inner  P r o b l e m .  E x p r e s s i o n s  f o r  the Drag  and Lif t .  We wr i t e  the 
equat ions  fo r  the inne r  p r o b l e m  and the boundary  condi t ions  on the su r f ace  of the sphe re  in the second 
approx imat ion :  

AlI(2)=O ' Q # ) _  k ~[I (2) r ~ R ,  (4.1) 
II Ox i ' 

nwi (2) = niQ~ (z), r = R, (4.2) 
(0~,~(2) Ovh(2)" / 

p(2) __ ~l \ 0 - -~  + "~xl  / nin~ = H(2)' r ---- R, (4.3) 

0vh(2) 0 (nmvm(2)) ---- r ( V / ( 2 )  Qh(2)), r = R. 0r nk ~ �9 ~ (4.4) 

Condi t ion (4.4) does not conta in  the angu la r  ve loc i ty  expl ic i t ly ,  s ince  $4.4) r e p r e s e n t s  boundary  con-  
. . . . . .  1/2 --*• �9 �9 dtt ton (1.6) wr i t t en  f o r  s e c o n d - o r d e r  quant t tms  m V and co. The t e r m  [a /k  ] (w R-~ f r o m  (1.6) is of f i r s t  

o r d e r  and has  been  comple t e ly  taken  into account  in the f i r s t  approx imat ion .  

Subst i tut ing (3.7) and (3.9) into (4.1) and (4.3) we obtain a Di r ich le t  p r o b l e m  f o r  the second approx i -  
mat ion  in the p e r m e a t i o n  flow: 

( 3 [ - F t +  7A i2T+6tp ~ )  
AH< 2) = 0;  II(2) ( R )  ---- p D V ~ m ~ r t k  - -  ~ ~ + ~ + ~ " 

We seek  a s e r i e s  s o l u t i o n  of th i s  equat ion  in the f o r m  II(2) = g  +gix i  § + . . . .  It f o l l ows  f r o m  boundary 

condi t ion  (4.5) tha t  g = g i k = g i k l  = . . .  0. 

( 3 ] + 1  7A t2, + 6q, ~__) 
gk = pDVm[~,nk - -  --B-Y- + F-~ + R5 + �9 

The equat ion AII(2) =0 is  sa t i s f ied  au tomat i ca l ly  in this  c a se .  Thus ,  f o r  the inner  p r o b l e m  we have in the 
second  approx ima t ion  

r I(2) = pDV,,[~k ( 3] +1  7A 12~ + 6r ~ )  (4.6) 
Ra -]- 4H - - T  + R - - - - F - - - -  + ~ xk, k 

Qi(2)-  ~1 Oxl -- v _ _  4R 4 tl~ "-~-" 

It now r e m a i n s  to sa t i s fy  condi t ions  (4.2) and (4.4). Subst i tut ing (3.9) and (4.6) into them, we obtain 
a s y s t e m  of equat ions  whose  so lu t ion  gives  the coef f ic ien t s  

/ ( 3 2 2 1 0  ~--~-~ + 450~-~) -- "-~r ["-~'128 + -489 ~k  + 330 ~ - ) 4  (4.7) 

, - 

( - ~ -  12 .~ +~r]~ - \ 

3~§177 n, -~"~5~ # 2 [  3 ~-2~s -330~-r + 

~2R'~ ( 35 k 19k 2, aaBa ( 7 2k k~r~) 
. . . .  " ' - - ~ + ~ - ~ + 2  

~ - ~ - ~ n *  = ~-~-1 ~- ~ - ~  
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a2R z / i 3 

This completes the determination of the pressure and velocity fields to the accuracy necessary to deter- 

$ mine the forces  ac t i lg  on'the porous sphere .  Substituting into F< = = -- pI~k + t + ds~ 
T'~R 

the express ions  p =p(0 +p(2) and v = v  (D +v(2) found above in which the coefficients A, D, e, f, v, and r are 
determined by Eqs. (2.7) and (4.7), and integrating, we obtain the result  

= = , 6 ~ n ~  + =~. ~ R =  (~• ~he~ (4.8) 

Jr- /,,II~, 

3 ' z  

47 k - - 2 i ~ -  a/{ \ ---~-~/-~'~--183~-~-)§ (4.9) i - - ' - ~ "  _4 kl/2(7 269 k k 2 '  

k / 425 k ~-~"~, ka/2 ! 123 k 9 k2 '~ + 

729 k= ~ p/2 {4~ + k 16~-L-" ~ ~"- , ~o~k - ~ 7 ~ "  

The first  t e r m  in (4.8) represen ts  a modified Stokes force acting on the porous sphere,  and the second 
t e r m  is the lift. In the l imit  k = 0  (impermeable sphere) s~= s z = 1, and (4.8) goes over  into the co r respond-  
ing formula  obtained in [3, 4] for  an impermeable  sphere.  An express ion  for  the Stokes dragexper ienced  
by a porous sphere in a uniform flow was found recently in [5], where, however, instead of the boundary 
condition (1.6) there  was imposed the incor rec t  (cf., [1, 2]) requirement  of the equality of the tangential 
components of the outer and permeat ion  velocit ies at the surface of the porous sphere.  In addition, we 
note that the resul t  obtained in [5] can be obtained formally f r o m  (4.8) and (4.9), by setting (~=~ and a:=0. 
A nonrotating sphere was considered in [5]. 
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