FORCES ON A POROUS SPHERE SPINNING IN A FLUID FLOW
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Exact expressions are found for the drag (modified Stokes force) and the lift (modified
Magnus force) on a porous sphere spinning slowly in a viscous fluid flowing slowly and
uniformly past it.

1. Statement of the Problem. Suppose a porous sphere of radius R rotating with a constant angular
velocity w; is located at the origin of coordinates in a uniform flow Vi =const, where VR/v and wR*/v <1.
The general expression for the force on the sphere due to the flow can be obtained from the requirement
of covariance. For convenience we introduce in place of the angular velocity pseudovector w the true anti-
symmetric tensor S =& ; @y dual to it. Assuming slow motions, VR/v and «R%A <1, we have

Fy=gqVi+0 5ik'Kh‘f’0(Vj, BinVe), - “(1.1)

where ¢ and 6 are constant scalars depending on the ViSCOSit};' and density of the fluid, the size of the sphere,
and the volume and surface permeability coefficients of the porous sphere.

The term ¢V; represents a correction to the Stokes resistance force from the porosity, and 85;;, Vi
is a correction to the 1ift, The lift is a bilinear (cross) effect, and its evaluation requires a solution of the
problem which takes account of the cross terms in the nonlinear terms of the Navier—Stokes equation and
because of the assumption of slow motions does not require taking account of terms containing squares of
the angular velocity and the ambient velocity. Thus, from the very beginning we can exclude from consider-
ation centrifugal forces inside the porous spinning sphere.

We note that in nonstationary flow [Vi =V ), Bijk =8ik ¢)] the force will not be a function but a func~
tional of Vi) and B;ik &) and their time derivatives. Inparticular, the functional will contain the aftereffect
integral. In this case ¢ and @ of (1.1) will not be constants, but will depend on the time and the integrands
of the functionals. Since the character of the time dependence of ¢ and 6 cannot be established from covari-
ant or dimensional arguments, the functional analog of (1.1) for nonstationary motion becomes useless.

We consider steady-state motion. To determine the explicit form of the force (1.1), i.e., the coef-
ficients ¢ and 8, it is necessary to know the perturbed velocity and pressure fields resulting from the pres-
ence of the spinning sphere. Their calculation requires solving two problems. The first or outer problem
requires solving the Navier—Stokes equation
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Fr o T, +vAv;, =—=0, r>R, (1.2)
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Ui—> Vi as I —> 00,

and the second or inner problem requires solving the Darcy equation for permeation flow of fluid in the
porous sphere,

- I ) 1.3)
All =0, Q;= e r<R. {
As was shown above, the centrifugal force must be omitted in the approximation considered.
Here vi and p are the velocity and pressure of the fluid outside the sphere, Q; and I are the perme-

ation velocity and the pressure of the fluid inside the sphere, k is the permeability of the sphere material,
and 7 is the dynamic viscosity of the fluid. :
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Three boundary conditions are set on the surface of the porous sphere the equality of the normal
components of the outer and permeation velocities

ni=nQ;yy r=R; (1.4)
the equality of the outer normal stress and the pressure inside the sphere
9z, au,
p_ntmﬂ_f)ninh:n, r=R (1.5)

/

and, finally, the boundary condition connecting the gradient of the tangential component of the outer velocity
and the difference in tangential components of the outer and permeation velocities
v,

'm a - -
T — g (0g0p) = 55 W — @ — (@ X R)], 7 =R. 1.6)

Boundary condition (1.6) is proposed on the basis of experiments in [1] and is theoretically justified in

[2]. Its physical meaning becomes clear if we note that at the boundary of a porous body the velocity of
the fluid changes from v outside the body to Q inside the body over a certain characteristic distance de-
pending on the porous properties of the body. Since the permeability k has the dimensions of the square
of a length, there is only one characteristic distance in a porous body, in addition to the size of the body
itself, and it is proportional to vk, Thus, the change in velocity in the region near the surface occurs
over a distance Ar ~Vk, and, consequently, we have for the velocity gradient in this region Av/d6r~ (v — Q)/
vk or 8v/dr=a [(v — Q)/kl/z]. Taking account of the curvature of the sphere leads to Eq. (1.6). Thus, the
coefficient o introduced in (1.6) reflects the surface properties of the porous body just as the coefficient k
reflects its volume properties, and both coefficients must be determined experimentally for each porous
material. The solution of the problem is constructed as an expansion in dimensionless small parameters
proportional, respectively, to Vi and Bjy, although dimensionless variables will not be used explicitly later
on, The first approximation, linear in V; and Bjk, does not contain their product and therefore does not
take account of the nonlinear terms in the Navier—Stokes equation. Inthe second approximation there are
retained everywhere, including the nonlinear term vy (Bvi/ dxi) of the Navier—=Stokes equation, only the
cross terms proportional to 8;)Vyy, i.e., those responsible for the lift.

2. First (Linear) Approximation, The first-approximation problem differs from the complete prob-
lem (1.2)-(1.6) only in that we have instead of (1.2)

(1) (1D
0= 22 +:A0fY, —-=0,

&) 7. as
o G v, =V r-—oo. 2.1)

7

Applying the divergence operation to the Navier —Stokes equation (2.1), we obtain
ApWw=0. (2.2)

The solution of (2.2) in which the perturbation of the pressure field by the sphere vanishes at infinity has
the form

7] 1\ a2 1
Pl a7 oema (7))

The tensors a, ai, @ik, - - - are constants and must depend linearly on the constant tensors V; and ik in
the first approximation which we are now constructing. From the requirement of covariance, and noting
that Bjx =—PBki, We obtaina =0 and @ =AV;. All tensors of higher rank vanish, Thus,

- 8 (1 2.3)
p(i) = nAVmb_.n-; (—;—) (
Substituting the expression obtained for the pressure into (2.1), we have for the velocity
w __ 1 p® i ( 1 ) 2.4
Al)i ——_;r-—(;;—A‘de.—I’ﬁ—zm—r—. ( )

Using the fact that Ar=2/r, we find the particular solution of Eq. (2.4) Vi(ligartl = (AV 1,/ 2) (8%/ 8% 9% ) 1.

The solution of the homogeneous equation (2.4) satisfying the conditionvi( )= — V; as r— has the form:

V(iﬁ o=Vi* (ei/r) +eik (B /0%y ) (1/1) +eyig (8%/0x).0x7)(1/T) + ... . Like the coefficients a, ai, @y, ...,

the coefficients cj, Cjk, . - . must also be linear covariant combinations of the tensors Vi and gk, which

uniquely determines their form: c¢;=cVj, ¢k =DBjk, Cik; =gb6jkVy. All tensors of higher rank vanish.

Writing the expression for the velocity and satisfying the equation of continuity we obtain for the velocity
171-(1) — Vi +A‘Lm (r) —-lﬂ-—-—— D(th Fen ( ) +8Vkm(};) (2,5)

A\
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We turn to the inner problem. Substituting (2.3) and (2.5) into (1.3) and (1.5) we obtain for the perme-
ation flow in the sphere the Dirichlet problem

AL = 0, TI® (R) = Vo [~ 24 + 115-) 2.6)

We seek a series solution of (2.6) in the form H“’:Y-%—V%—iuyiyxixh—{-'yikl TiTRTL -+ ove
From boundary condition (2.6) it follows that y=v; =vj; =0, v =n1Vi[— (BA/R?) +(12¢/R%)]. The
equation Al =0 is satisfied automatically in this case so that we have inside the sphere
12¢

34 k ol 34 {2¢
[ = V7, { — 22 e Do e e — RV =
S =l 1( B e )x“ Q; W o, kv, <_‘R3 — = \]

Now satisfying the remaining two boundary conditions (1.4) and (1.6) we obtain a system of equations whose
solution gives the coefficients

3+3_’0‘;_§ N
S W P ey - .7
(H Rz) m‘i( 7] b =2%r
1 LR
_ 2 f/zalf B3
(2—:-3%‘;_)‘_’;3(4+15%>

3. Second Approximation for the Outer Problem. We write the equation for the outer problem in
the second approximation, denoting second-approximation quantities by the superscript (2),

ap®
Oz,

T

o (1

" 3%( )
O m,
k

87.(2
+ vAy;?, —:i-— =0, r>R. @3.1)
i <
Substituting into (3.1) the expression for vi(l) from (2.5) and, in accordance with the problem posed, select-
ing in the left~hand Eq. (3.1) only the cross terms proportional to BikVyy> We obtain

=L
o

1 9p® DBV 1 A v DBanVon 3 Dy .
Ayi(2)==_L+__LL(__r_3_+?r_4+%)+_JLLM(3 ZA)+M(A 38) (3.2)

[ azi v v 73 Iy v 354 T )

Applying the divergence operation to (3.2), we obtain the equation for p(z),

) 8 (A 3
Bp = pDPinVm 52~ (5 — 7 ) (3.3)
A particular solution of (3.3) is -
2) d [ 4 €
ppartic = pDﬁimeE (F — ;;rz) 3.4)

We seek the solution of the homogeneous equation in the form

@_ s 31 ? (1
Phome =+ Stz () + Sihaza—xk(T) + o (8.5)

From the fact that the constant tensors s, si, sk, ... must be linear covariant combinations of the
tensor BikVm Or its contraction, it follows uniquely that

$=0y 8 =pfDVmBms (3.6)

All tensors of higher rank are equal to zero (0D is introduced for uniformity of notation in subsequent
formulas). Thus, from (3.4)-(3.6)

a [ f A [
2 — (£ . B .
P® = oDV P m( L —gs + ) 3.7
Substituting (3.7) into (3.2) and making transformations to simplify the integration, we obtainthe equation
DB, V DV_B : [ DV.B,
@ _“Pimtm| A _?1-‘;3_) mPme 8 f A g Bim 52 1 40 3.8
Boi™=—3 ( g T )ty oz 0z, (T e T 374‘) v B8z,07 (T — %) .8
We write a particular solution of this equation:
U'(Z) — DBimV‘m (_ i e ) . Drmﬁmk g2 fr
ipartic v 16r2 T )T Ty dzdr, \'2
Alnr € DVlﬁim % r A
TS + 1-61—'?) + v dz, 0, (_Z— T In r)
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and the solution of the homogeneous equation (3.8): i)omo i/ ) +TiKk (8/8xK) (1/1) +Tiky 0/ 0y 0x) (1/
r)+..., where the constant tensors 7j, Tik, - - . are proportional to the tensor gjxVy, or its contraction
BikVi- Satisfying the covariance requirement we obtain: 7= (D/v) ¥V Bmis Tik =0, Tikz = O/VIVp; +
(D/v)16;1,VmBmi- Tensors of higher rank vanish (DA is introduced for uniformity of notation in subsequent
formulas). Satisfying the equation of continuity we obtain the following expression for the outer velocity

in the second approximation:

Dszm mff--1 A T—1 g
Y ( T 4re + =] + 7'_4) +
Drmﬁmhninh (_ 7 i 3T &
v

o
52 =

+

DV 3
+ lﬁnn m"l{ 1 ;4_ 3 ) (3.9)

4. Second Approximation for the Inner Problem. Expressions for the Drag and Lift. We write the

equations for the inner problem and the boundary conditions on the surface of the sphere in the second
approximation:

T k o
M@ =0, Q¥ =—T—, r<R ' (@.1)
nw® =nQ®, r=R, 4.2)
(60,02 80, @
y i 7 — 112} =
p® (G o+ T e =1, =R @.3)
a0, %) 2 2)
G g lreen®) = 5 (00— ), r=F. @.4)

Condition (4.4) does not contain the angular velocity explicitly, since (4.4) represents boundary con~
dition (1.6) written for second-order quantities in V and w, The term [o/k' ?](@x R) from (1.6) is of first
order and has been completely taken into account in the first approximation.

Substituting (3.7) and (3.9) into (4.1) and (4.3) we obtain a Dirichlet problem for the second approxi-
mation in the permeation flow:

6
ATI® = 0; 1O (B) = oDV s (— Lt 4+ + 550+ ),

We seek a series solution of this equation in the form (%) =g +giXq +gikxixk +.... It follows from boundary
condition 4.5) that g=g;x=8ikz=.-- 0.

. 1" 6‘

The equation ATI®) =0 is satisfied automatically in this case. Thus, for the inner problem we have in the
second approximation

+ B

1 = pDV s ( 3f !y 'H‘ + KEL“_’ + )xh, 4.6)
koaI® R (3f —1 74 12146p )

QP = — W TDV'“B"”( ® iR, R B

It now remains to satisfy conditions (4.2) and (4.4), Substituting (3.9) and (4.6) into them, we obtain
a system of equations whose solution gives the coefficients

B K\ GR( Bk
TR T AR\ 3 T R ‘18034)+

fe @.7)
ok KT\ wR (138
(3 10 7 + 45057 ) + Aifz(?» 248 e+ 330 o |+
@R/ 15 63 k 2\ a3R [ 2 13 k K
7% (—“:J,'T—Rz +961{4)+,@T(_?+?F+121—25\)
-  afRE (56 -k __ A®\ a?R3 (3 k k2 !
+ 5 (T )+ gy (7o o)
(1615 ey, R 19 ik
TR~ 0R)T W( ?T—e)T
T= —
o e K 128 % 7
(5-’“3 " T ‘DORA) Ailz(_+{)*8 “330?27)'*‘
aZk?® ﬁ A 12K% | 3R? 7 P N
Tk (—1 IR 1{4)‘r 2 (‘E*;&Tﬂ‘zﬁ)
— R?

" a*RE (56 K __k%\  aRe k KTy
(~ - 2 )#‘ka/z (3+832+6Rl)
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15 & afl 3 .k a?R? i 3 &

R L. el e S 3 A SR 3.0
b= k R? k
- (36+135F§_)+k1/2(30+72m)+“k (6+91‘ﬁ')

This completes the determination of the pressure and velocity fields to the accuracy necessary to deter-

. . v, de,
mine the forces acting on the porous sphere. Substituting into F;= 45 {— PO + M ( 0z; + a: )J dsg,
=R 1
the expressions p= p(i) +p(2) and v= v(i) +v () found above in which the coefficients A, D, €, f, 7, and ¢ are

determined by Eqs. (2.7) and (4.7), and integrating, we obtain the result

- - > -
F = 5,6aR0V + s,-npR3 (VX ), where (4.8)
. kl/‘l

_ Yew
f= 5 kN 2 Bk

(1—r'§ﬁ‘)+ <R (21—73?)

ATk Ry g2 269 & BN

\ (1“7[?""21? +;§(’_Tﬁﬂ ~ 18w |+ (4.9)
2 P9 7 S E i

(1*332?"*27{7)*——" (p+907m+2 g—«) T

K T0kE\ g2 [ 1665 &7 i 105k 67502
(30 T 153'“77‘5;)—{—“333(44—}—“76}29—}- % H)+04[i4 (2*“!‘ BT T 2}{4)

The first term in (4.8) represents a modified Stokes force acting on the porous sphere, and the second
term is the lift. In the limit k=0 (impermeable sphere) s,=s,=1, and (4.8) goes over into the correspond-
ing formula obtained in [3, 4] for an impermeable sphere. An expression for the Stokes dragexperienced
by a porous sphere in a uniform flow was found recently in [5], where, however, instead of the boundary
condition (1.6) there was imposed the incorrect (cf., [1, 2]) requirement of the equality of the tangential
components of the outer and permeation velocities at the surface of the porous sphere. In addition, we
note that the result obtained in [5] can be obtained formally from (4.8) and (4.9), by setting o= and w=0,
A nonrotating sphere was considered in [5].
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